Loading...
Принято считать, что элементарной ячейкой квантовой информации является квантовый бит (кубит) — двухуровневая квантовая система, способная находиться как в состояниях 0 или 1, так и одновременно в их суперпозиции. Однако возможности многих физических систем заметно шире, и количество уровней в базовой квантовой ячейке может быть больше двух. Использование этих дополнительных уровней дает прирост производительности квантового процессора при том же количестве элементарных ячеек.
Работа российских ученых содержит в себе сразу несколько уникальных достижений. Во-первых, был выполнен алгоритм, позволивший промоделировать различные режимы затухающих колебаний некоторой абстрактной квантовой системы на квантовом процессоре. Подобная концепция уже была предложена научной группой хельсинского университета Аалто, однако, в отличие от финских коллег, российским ученым для реализации идеи потребовался всего лишь один кутрит вместо двух полноценных кубитов, что является более экономичным решением с точки зрения ресурсов квантового процессора. Во-вторых, представленный алгоритм был успешно выполнен сразу на двух различных квантовых платформах: в ФИАН на ионах в ловушке, а в НИТУ МИСиС на сверхпроводниковом 8-кубитном процессоре.
«Для меня этот результат представляется важным прежде всего потому, что одновременно, фактически в параллельном режиме, квантовые алгоритмы были запущены на двух совершенно разных физических платформах — сверхпроводящей и ионной — в двух ведущих российских исследовательских центрах. Идентичность результатов указывает на высокую достоверность и воспроизводимость расчетов на разных аппаратных средствах и, конечно, на справедливость квантовых постулатов. И, конечно, тот факт, что мы впервые использовали ионные и сверхпроводящие кутриты, также выделяет данное исследование: в мире насчитывается всего несколько групп, которые овладели этим методом», — сообщил директор Физического института им. П.Н. Лебедева РАН Николай Колачевский.
«Для нас это исследование крайне важно, чтобы продемонстрировать потенциал квантовых вычислений в изучении фундаментальных физических явлений, таких как фазовые переходы. Реализация данного эксперимента потребовала развития экспериментальных методов контроля многоуровневыми квантовыми системами, что было успешно продемонстрировано для двух разных физических платформ», — отметил директор Института физики и квантовой инженерии Университета МИСИС Алексей Федоров.
«Исследование дополнительного уровня на сверхпроводниковых кубитах представляет для нас больший интерес. Проделанная работа является важным шагом на пути к реализации защищенных логических кубитов с использованием кодов коррекции квантовых ошибок, так как именно утечка квантовой информации на этот уровень считается наиболее трудно исправляемой ошибкой. Кроме того, дополнительный уровень дает новые возможности с точки зрения выполнения квантовых алгоритмов здесь и сейчас. Например, его можно использовать для эффективной декомпозиции сложных квантовых операций, таких как вентиль Тоффоли. Наконец, отдельного внимания заслуживают в принципе исследования, связанные с квантовой тернарной логикой, поскольку она позволяет при практических тех же физических ресурсах оперировать логическим пространством большой размерности», — сообщила первый автор работы, сотрудница РКЦ и лаборатории сверхпроводниковых квантовых технологий Университета МИСиС Алена Казьмина.
В дальнейшем ученые планируют продолжить разработку квантовых алгоритмов на кутритах и, в частности, исследовать методы коррекции квантовых ошибок, затрагивающие дополнительные уровни.
Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.