Loading...
На Землю из космоса постоянно прилетают элементарные частицы с огромной энергией, называемые космическими лучами. Попадая в атмосферу, они сталкиваются с веществом воздуха, порождая большое количество вторичных частиц (протонов, нейтронов, пионов и других). Те, в свою очередь, продолжают взаимодействовать или распадаться, давая начало новым поколениям частиц. В результате развивается так называемый широкий атмосферный ливень — лавина частиц, которые можно зарегистрировать на поверхности Земли с помощью детекторов.
При этом продукты широкого атмосферного ливня — частицы, достигшие поверхности Земли, — несут информацию обо всех реакциях, которые происходили до момента их образования в верхних слоях атмосферы. Поэтому с их помощью можно изучать свойства и особенности распространения космических лучей, а также законы физики элементарных частиц при высоких энергиях. Однако исследователи столкнулись с так называемой «мюонной загадкой» — ситуацией, когда земные детекторы фиксируют в атмосфере намного больше одних из продуктов широких атмосферных ливней — мюонов, — чем предсказывают компьютерные симуляции.
Ученые из Института ядерных исследований РАН (Москва) и Московского государственного университета имени М.В. Ломоносова (Москва) заметили, что энергию первичных частиц в составе космических лучей экспериментаторы рассчитывают по числу электронов на Земле. Авторы предположили, что такой подход может привести к неправильным оценкам. Так, если энергия первичной частицы оказывается недооцененной (когда расчетные значения ниже настоящих), следует ожидать, что в реальности и число порождаемых ею мюонов в атмосфере будет больше. Вероятно, как раз это и видят современные установки на практике.
«Энергия первичной частицы может оказаться недооцененной потому, что физика на масштабах самых высокоэнергетичных космических лучей отклоняется от предсказаний Специальной теории относительности. То есть стандартные методы расчетов с общепринятыми соотношениями между энергией и импульсом частиц восстанавливают энергию неправильно. Поэтому мы предположили, что нужно скорректировать это соотношение в случае высокоэнергетических потоков частиц», — поясняет участник проекта, поддержанного грантом РНФ, Андрей Шарофеев, аспирант МГУ, стажер-исследователь ИЯИ РАН.
Чтобы проверить эту гипотезу, физики математически смоделировали развитие широких атмосферных ливней с учетом нового — модифицированного для высоких энергий — соотношения между энергией и импульсом. Оказалось, что в этом случае удается практически разрешить «мюонную загадку»: смоделированная величина эффекта от недооценки энергии сходится с той, что измерена в экспериментах по изучению широких атмосферных ливней.
«Несмотря на то, что речь идет о физике на совершенно невероятных по меркам лабораторного эксперимента масштабах энергии, сценарий, который мы предлагаем, можно явно проверить. Если измерить на установке спектр мюонов и сверить его с моделированием, в котором учитывается бóльшая энергия первичной частицы, мы должны получить точное сходство. А вот если сходства не обнаружится — то, увы, наше изящное объяснение окажется все-таки неправильным», — рассказывает участник проекта, поддержанного грантом РНФ, Николай Мартыненко, аспирант МГУ, стажер-исследователь ИЯИ РАН.
Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.